Machine Learning Researcher, Vulcan
Taipei
OneDegree
OneDegree is the first virtual insurer in Hong Kong that’s revolutionizing the industry, keeping you, your pets, and your property safe via digitalization.Job Description
We are seeking a skilled and experienced Machine Learning (ML) Researcher to contribute to the development of cutting-edge safety and security solutions for ML systems, with a strong focus on large language & multi-modal models (LLMs) and their applications. The ideal candidate will have hands-on experience building and deploying LLMs in production environments, combined with a passion for addressing challenges related to adversarial attacks, model robustness, data privacy, and compliance.
我們正在尋找一位具備豐富經驗的機器學習研究員,專注於研究最前沿的ML系統安全與防護解決方案,特別是大型語言模型與多模態模型及其應用領域。該職位應具備ML的研究與開發經驗,並對於對抗式攻擊、模型穩健性、數據隱私與合規等挑戰充滿熱情,致力於推動更安全、更可靠的AI解決方案。
Vulcan: https://vulcanlab.ai/
Cymetrics: https://cymetrics.io/zh-tw/products/ai-redteam
OneDegree Tech Blog: https://medium.com/onedegree-tech-blog
-
How to apply
It will help us process your applications faster
*Please apply by English CV, thank you.
-
Responsibilities
Research and Development:
- Conduct original research on ML safety and security topics, including adversarial robustness, LLM interpretability, bias detection, and secure training protocols.針對 ML 安全與防護 進行原創性研究,包括 對抗式攻擊防禦、LLM 可解釋性、偏見偵測 以及 安全訓練協議。
- Develop state-of-the-art techniques to identify and mitigate risks specific to LLMs, such as prompt injection, data leakage, and unintended outputs.開發最先進技術,識別並緩解 LLM 風險,如 Prompt 注入攻擊、數據洩露、非預期輸出 等問題。
- Explore scalable approaches for ensuring model safety, fairness, and reliability in production environments.
探索可擴展的方法,以確保 模型的安全性、公平性與穩定性,並能適用於生產環境。
Practical Development and Deployment:
- Design, develop, and deploy large language models (LLMs) for production use cases, ensuring they meet high standards of performance, reliability, and safety.
設計、開發並部署 大型語言模型,確保其在生產環境中具備高效能、可靠性與安全性。 - Optimize LLMs for resource efficiency and integrate safety and security features into deployment pipelines.
優化 LLM 的資源使用效率,並將安全防護功能整合至部署流程。 - Implement monitoring tools to detect and address real-world threats to deployed ML systems, including LLMs.
實作監控工具,偵測與應對 LLM 及 ML 系統的潛在安全威脅。
Threat Analysis and Risk Mitigation:
- Identify vulnerabilities and attack vectors in ML systems, particularly in LLM-based applications.
識別 ML 系統漏洞與攻擊向量,特別是基於 LLM 的應用。 - Develop tools and strategies for protecting LLM systems from adversarial attacks, data poisoning, and unintended behaviors.
開發防禦工具與策略,防範 對抗式攻擊、數據投毒 及 非預期行為。 - Build frameworks to evaluate the safety and security of LLMs under various operational scenarios.
建立安全性評估框架,測試 LLM 在不同運行場景下的安全性與穩定性。
Collaboration and Integration:
- Collaborate with cross-functional teams, including engineers, product managers, and domain experts, to align research efforts with business goals.
與 工程師、產品經理、領域專家 合作,確保研究成果符合業務目標。 - Work closely with DevOps teams to integrate research outcomes into scalable and reliable LLM deployment workflows.
與 DevOps 團隊 緊密合作,將研究成果整合至 LLM 部署流程,確保其可擴展性與可靠性。
Compliance and Ethics:
- Ensure LLM deployments comply with relevant safety, security, and data privacy regulations.
確保 LLM 部署符合資安、隱私與法規要求。 - Advocate for ethical and transparent AI practices in product development.
推動 AI 倫理與透明度,確保 AI 產品開發符合公平性與合規性標準。
Thought Leadership:
- Publish research findings in leading journals and conferences to contribute to the advancement of ML safety and security.
發表研究成果,參與頂尖學術期刊與 AI 安全會議,推動 ML 安全領域的發展。 - Represent the organization in academic and industry forums focused on AI safety and security.
代表公司參與 AI 安全與資安相關論壇,提升業界影響力。
Requirements
Education Background:
Bachelor's, Master's, or Ph.D. in Computer Science, Artificial Intelligence, Machine Learning, Cybersecurity, or a related field. Equivalent industry experience will also be considered.
計算機科學、人工智慧、機器學習、資安或相關領域的學士、碩士或博士學位。具備同等業界經驗者亦可。
Technical Skills:
- Strong programming expertise in Python and experience with ML frameworks such as PyTorch, TensorFlow, or similar.
精通 Python,並具備 PyTorch、TensorFlow 或類似機器學習框架的開發經驗。 - Proven experience building, fine-tuning, and deploying LLMs and other NLP models (e.g., BERT) in production environments.
具備大型語言模型與自然語言處理模型(如 BERT)的開發、微調與生產環境部署經驗。 - In-depth knowledge of adversarial ML, differential privacy, and secure training practices.
熟悉對抗式機器學習、差分隱私與安全訓練技術。 - Experience with MLOps tools (e.g., Kubeflow, MLflow .. etc) for deploying and managing ML models in production.
具備 MLOps 工具(如 Kubeflow、MLflow)操作經驗,能有效管理與部署 ML 模型至生產環境。
Experience:
- Hands-on experience developing, deploying, and optimizing large-scale ML models, particularly LLMs, for real-world applications.
具備大型 ML 模型(特別是 LLMs)在實際應用場景中的開發、部署與優化經驗。 - A proven track record of addressing security and safety concerns in deployed ML systems.
成功處理 ML 系統安全與穩定性問題的經驗,包括風險分析與安全性提升。 - Experience with data preprocessing, model evaluation, and performance tuning for LLMs in production.
熟悉 LLMs 的數據預處理、模型評估與效能調校,確保模型在生產環境中的最佳運行。 - Experience in identifying emerging ML and AI threats.
具備識別 AI/ML 領域新興威脅的經驗,可主動發掘與應對潛在風險。
Soft Skills:
- Strong problem-solving and critical-thinking abilities.
優秀的問題解決與批判性思維能力。 - Excellent communication skills, with the ability to convey technical concepts to diverse audiences.
出色的溝通能力,能夠向不同背景的受眾清楚表達技術概念。 - Ability to write and speak in English fluently.
流利的英文書寫與口語表達能力。 - Passion for developing robust, secure, and ethical AI systems.
熱衷於開發安全、穩健且符合倫理的 AI 系統。
Nice-to-Have:
- Experience with AI model interpretability and explainability techniques.
熟悉 AI 模型可解釋性與可解釋 AI 技術。 - Knowledge of federated learning, differential privacy, and secure AI training methodologies.
了解聯邦學習、差分隱私、安全 AI 訓練方法。 - Background in AI compliance and auditing.
具備 AI 合規性與審計相關經驗。
加分條件(Nice-to-Have)
- Familiarity with prompt engineering and LLM evaluation methodologies.
熟悉 Prompt Engineering 與 LLM 評估方法。 - Knowledge of regulatory frameworks (e.g., GDPR, CCPA, AI Act) and secure software development practices.
了解 AI 相關法規(如 GDPR、CCPA、AI Act),並具備安全軟體開發實踐經驗。 - Experience working with interdisciplinary teams (e.g., legal, compliance, or policy).
曾與跨領域團隊(如法務、合規、政策制定)合作,解決 AI 安全與合規問題的經驗。
* Salary range is an estimate based on our AI, ML, Data Science Salary Index 💰
Tags: BERT Computer Science DevOps Engineering Kubeflow LLMs Machine Learning MLFlow ML models MLOps NLP Pipelines Privacy Prompt engineering Python PyTorch Research Security TensorFlow
Perks/benefits: Conferences
More jobs like this
Explore more career opportunities
Find even more open roles below ordered by popularity of job title or skills/products/technologies used.