Recommendation Large Model Researcher-Global E-commerce
Singapore, Singapore
Team Introduction:
The team primarily focuses on recommendation services for the International E-commerce Mall, covering information flow recommendation in core scenarios such as the mall homepage, transaction funnels, product detail pages, stores & showcases. Committed to providing hundreds of millions of users daily with precise and personalized recommendations for products, live streams, and short videos, the team dedicates itself to solving challenging problems in modern recommendation systems. Through algorithmic innovations, we continuously enhance user experience and efficiency, creating greater user and social value.
Project Background/Objectives:
This project aims to explore new paradigms for large models in the recommendation field, breaking through the long-standing structures of recommendation models and Infra solutions, achieving significantly better performance than current baseline models, and applying them across multiple business scenarios such as Douyin short videos/LIVE/E-commerce/Toutiao. Developing large models for recommendation is particularly challenging due to the high demands on engineering efficiency and the personalized nature of user recommendation experiences. The project will conduct in-depth research across the following directions to explore and establish large model solutions for recommendation scenarios:
Project Challenges/Necessity:
The emergence of LLMs in the natural language field has outperformed SOTA models in numerous vertical tasks. In contrast, industrial-grade recommendation systems have seen limited major innovations in recent years. This project seeks to revolutionize the long-standing paradigms of recommendation model architectures and Infra in the recommendation field, delivering models with significantly improved performance and applying them to scenarios like Douyin short video and LIVE. Key challenges include:
High engineering efficiency requirements for recommendation systems;
Personalized nature of user recommendation experiences;
Effective content representation for media formats like short videos and live streams.
The project will address these through deep research in model parameter scaling, content/user representation learning, multimodal content understanding, ultra-long sequence modeling, and generative recommendation models, driving systematic upgrades to recommendation models.
Project Content:
1. Representation Learning Based on Content Understanding and User Behavior
2. Scaling of Recommendation Model Parameters and computing
3. Ultra-Long Sequence Modeling
4. Generative Recommendation Models
Involved Research Directions: Recommendation Algorithms, Large Recommendation Models.
The team primarily focuses on recommendation services for the International E-commerce Mall, covering information flow recommendation in core scenarios such as the mall homepage, transaction funnels, product detail pages, stores & showcases. Committed to providing hundreds of millions of users daily with precise and personalized recommendations for products, live streams, and short videos, the team dedicates itself to solving challenging problems in modern recommendation systems. Through algorithmic innovations, we continuously enhance user experience and efficiency, creating greater user and social value.
Project Background/Objectives:
This project aims to explore new paradigms for large models in the recommendation field, breaking through the long-standing structures of recommendation models and Infra solutions, achieving significantly better performance than current baseline models, and applying them across multiple business scenarios such as Douyin short videos/LIVE/E-commerce/Toutiao. Developing large models for recommendation is particularly challenging due to the high demands on engineering efficiency and the personalized nature of user recommendation experiences. The project will conduct in-depth research across the following directions to explore and establish large model solutions for recommendation scenarios:
Project Challenges/Necessity:
The emergence of LLMs in the natural language field has outperformed SOTA models in numerous vertical tasks. In contrast, industrial-grade recommendation systems have seen limited major innovations in recent years. This project seeks to revolutionize the long-standing paradigms of recommendation model architectures and Infra in the recommendation field, delivering models with significantly improved performance and applying them to scenarios like Douyin short video and LIVE. Key challenges include:
High engineering efficiency requirements for recommendation systems;
Personalized nature of user recommendation experiences;
Effective content representation for media formats like short videos and live streams.
The project will address these through deep research in model parameter scaling, content/user representation learning, multimodal content understanding, ultra-long sequence modeling, and generative recommendation models, driving systematic upgrades to recommendation models.
Project Content:
1. Representation Learning Based on Content Understanding and User Behavior
2. Scaling of Recommendation Model Parameters and computing
3. Ultra-Long Sequence Modeling
4. Generative Recommendation Models
Involved Research Directions: Recommendation Algorithms, Large Recommendation Models.
* Salary range is an estimate based on our AI, ML, Data Science Salary Index 💰
Job stats:
1
0
0
Category:
Research Jobs
Tags: Architecture E-commerce Engineering Industrial LLMs Research
Region:
Asia/Pacific
Country:
Singapore
More jobs like this
Explore more career opportunities
Find even more open roles below ordered by popularity of job title or skills/products/technologies used.
BI Developer jobsData Engineer II jobsStaff Data Scientist jobsSr. Data Engineer jobsPrincipal Data Engineer jobsStaff Machine Learning Engineer jobsPrincipal Software Engineer jobsData Science Manager jobsData Manager jobsData Science Intern jobsSoftware Engineer II jobsDevOps Engineer jobsBusiness Intelligence Analyst jobsJunior Data Analyst jobsData Analyst Intern jobsData Specialist jobsBusiness Data Analyst jobsLead Data Analyst jobsStaff Software Engineer jobsSr. Data Scientist jobsAI/ML Engineer jobsSenior Backend Engineer jobsData Governance Analyst jobsData Engineer III jobsResearch Scientist jobs
Consulting jobsAirflow jobsMLOps jobsOpen Source jobsKPIs jobsKafka jobsJavaScript jobsLinux jobsEconomics jobsTerraform jobsNoSQL jobsData Warehousing jobsComputer Vision jobsGoogle Cloud jobsGitHub jobsRDBMS jobsPostgreSQL jobsScikit-learn jobsR&D jobsPhysics jobsStreaming jobsHadoop jobsData warehouse jobsBanking jobsScala jobs
dbt jobsPandas jobsBigQuery jobsOracle jobsClassification jobsReact jobsLooker jobsRAG jobsCX jobsScrum jobsPySpark jobsDistributed Systems jobsPrompt engineering jobsIndustrial jobsRedshift jobsELT jobsMicroservices jobsJira jobsGPT jobsTypeScript jobsRobotics jobsOpenAI jobsLangChain jobsSAS jobsJenkins jobs