Masterarbeit - Machine Learning: Concept Extraction Validation Benchmark

Stuttgart, DE, 70569

Fraunhofer-Gesellschaft

Die Fraunhofer-Gesellschaft mit Sitz in Deutschland ist eine der führenden Organisationen für anwendungsorientierte Forschung. Im Innovationsprozess spielt sie eine zentrale Rolle – mit Forschungsschwerpunkten in zukunftsrelevanten...

View all jobs at Fraunhofer-Gesellschaft

Apply now Apply later

Field of study: computer science, mathematics, software design, software engineering, technical computer science or comparable.

 

Machine Learning (ML) models are reaching a maturity level that allows their operational use in businesses. However, in some areas, this use is limited by their ”black box” nature: the decision-making logic and potential errors of a model are not transparent, making it unsuitable for safety-critical applications or those requiring trust in the model. The field of Explainable Artificial Intelligence (XAI) addresses this by providing methods to make model behavior more interpretable. Among these, concept-based and prototype-based methods show promise in offering intuitive insights into model decisions. To truly build trust and ensure safe deployment of models, however, it is not enough for XAI methods to be intuitive — they must must also meet some key requirements. For example, the methods need to be reliable and their explanations need to be faithful to the model, while having a complexity level appropriate for human users. To ensure that these properties are met, XAI methods must be rigorously validated. Furthermore, such an evaluation should be systematic, allowing to compare most methods on the same ground. A framework for this is still largely missing in current XAI pipelines.

 

This thesis investigates the systematic benchmarking of concept-based explanation methods for machine learning models. It adapts an existing benchmarking framework, originally developed for pro- totype methods, to support the evaluation of concept-based explanations. The project also includes the empirical testing of concept extraction methods, evaluating their effectiveness and reliability using diverse metrics and datasets. The work contributes toward standardizing the evaluation of XAI techniques to ensure that generated explanations are meaningful and faithful to the underlying model.

 

Was Sie bei uns tun

The candidate will first conduct a literature review to identify desirable properties of trustworthy explanations and corresponding evaluation criteria. This includes analyzing existing benchmarks, theoretical foundations, and practical requirements of concept-based XAI methods. Based on this, suitable evaluation metrics will be selected or developed and integrated into the benchmarking pipeline. The newly implemented metrics will then be used to evaluate a concept extraction method in various scenarios.


This requires proficiency in Python and familiarity with modern ML libraries.

Scope:

  • Identifying and formalizing evaluation properties for concept-based XAI methods
  • Adapting an existing benchmark suite for prototype methods to accommodate concept-based explanations
  • Implementing and testing relevant evaluation metrics
  • Empirical benchmarking of a selected concept extraction method across multiple datasets and
    models

 

Was Sie mitbringen

  • Solid understanding of machine learning
  • Strong programming skills in Python
  • Ideally, prior experience with explainability or XAI methods
  • Independent, reliable, and result-oriented working style
  • Good English communication skills

 

Was Sie erwarten können

  • Interesting tasks in applied research
  • Intensive support during the project
  • Collaboration projekt with University of Stuttgart IFF and RWTH Aachen University DSME

 

Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt.

 

Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft. 

Haben wir Ihr Interesse geweckt? Dann bewerben Sie sich jetzt online mit Ihren aussagekräftigen Bewerbungsunterlagen. Wir freuen uns darauf, Sie kennenzulernen! 
 

 

Frau Lisa Bauer
Recruiting
Tel. +49 711 970-3681

lisa.bauer@ipa.fraunhofer.de

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA 

www.ipa.fraunhofer.de 


Kennziffer: 79958                

 

Apply now Apply later

* Salary range is an estimate based on our AI, ML, Data Science Salary Index 💰

Job stats:  1  0  0

Tags: Computer Science Engineering Machine Learning Mathematics ML models Pipelines Python Research Testing

Region: Europe
Country: Germany

More jobs like this