PhD Cifre Thesis - Advanced Physical and Numerical Modeling of icing phenomena in freezing drizzle and freezing rain conditions

Toulouse - Saint-Martin, France

Airbus

Airbus designs, manufactures and delivers industry-leading commercial aircraft, helicopters, military transports, satellites, launchers and more.

View all jobs at Airbus

Apply now Apply later

Job Description:

A PhD position about the “Advanced Physical and Numerical Modeling of icing phenomena in freezing drizzle and freezing rain conditions (Supercooled Large Droplets)” is proposed in the Engineering Flight Physics Capabilities Team within Airbus Civil Aircraft in Toulouse.

Mission of the team

-----------------------------------------------------------------------------------------------------------------------

The Mission of the Capability Operations domain (1GZ) is to support, develop and deliver

world-class customer-oriented computational simulation means and services in particular for

Aerodynamics, multi-phase flows, convective heat transfer, and icing disciplines, through

technical excellence, continuous innovation and realistic commitments.

The Role

-----------------------------------------------------------------------------------------------------------------------

Icing environments gather various kinds of icing conditions. Among them, Supercooled Large Droplets (SLDs) are of particular interest as they have been recently included in the set of conditions against which aircraft have to be certified.

One of the specificities of supercooled large droplets including freezing drizzle and freezing rain comes from the size of the water droplets contained in these clouds. Indeed, their diameter can exceed 500 microns. As a result, complex phenomena take place when these particles impact aircraft surfaces among which splashing and bouncing. As a consequence, a part of the water contained in the droplets does not deposit on the surfaces and is re-emitted in the airflow.

In order to be able to properly size ice protection systems in SLD conditions, it is mandatory to evaluate the amount of ice which is likely to accrete on aircraft surfaces. As it is directly related to the quantity of water which deposits on the surfaces, an accurate understanding and modeling of the impact phenomena such as splashing and bouncing is mandatory.

Even though significant experimental and modeling research efforts have been carried out at national, european and international level on this topic, none of the state of the art SLD models is adequate nor general and contradictions between some of these models have even been highlighted.

The objective of the PhD, in collaboration with the french aerospace lab ONERA,  is to perform a quantitative experimental characterization of the mass of water which deposits on a surface during an SLD impact. Using ONERA experimental capabilities (vertical icing wind tunnel) and scientific expertise, an experimental setup will be designed in order to allow the quantitative measurement of the quantities of interest in conditions representative of aircraft in-flight icing.

Sensitivities to different parameters involved in impact phenomena will be carried out. For example, the droplet diameter will be varied as well as the surface roughness of the test article. In particular, heated surfaces will be studied in order to simulate the activation of an anti-icing system as well as droplet impact on runback ice shapes which form when runback water freezes outside of the heated zones.

These experimental data will feed physical models in order to improve the icing numerical capabilities. The improved models will be implemented in the ONERA icing numerical simulation tools (IGLOO2D and IGLOO3D).

The following steps will have to be addressed:

  • Literature review to gather already available experimental data,  evaluate and down-select available experimental measurement techniques

  • Design a dedicated experimental setup with the objective to measure the deposited mass of water during an SLD impact in representative aircraft in-flight icing conditions (altitude, speed,...)

  • Perform experimental campaigns in the ONERA vertical icing wind tunnel and measure the necessary quantities

  • Post-process the experimental data and improve SLD models 

  • Implement SLD models in ONERA 2D and 3D icing suites

  • Validate the SLD models against experimental data available in the literature

Required skills:

------------------------------------------------------------------------------------------

As the successful candidate, you will be able to demonstrate the following skills and competencies:

  • Engineering or research master degree in Applied Mathematics or Fluid dynamics

  • Good knowledge of experimental techniques in fluid mechanics and multi-phase flows including measurement techniques (first experience with the use an experimental setup is a plus)

  • Good Knowledge of numerical methods for CFD

  • Good knowledge of basic aerodynamic and boundary layer principles

  • Good knowledge of basic thermodynamics and multi-phase flows

  • Good knowledge of scientific programming (fortran, python)

  • Communication, networking and collaboration

  • Advanced level of English

Version FR:

Un poste pour une thèse CIFRE d'une durée de trois ans portant sur la « Modélisation physique et numérique avancée des phénomènes de givrage en conditions de bruine verglaçante et de pluie verglaçante (Supercooled Large Droplets) » est proposé au sein du département de l’ingénierie Physique du Vol de la division d’Airbus Avions Civils à Toulouse.

Mission de l'équipe

-----------------------------------------------------------------------------------------------------------------------

La mission du domaine Flight Physics Capabilities and Strategy (1GZ) est de soutenir, développer et fournir des moyens et services de simulation numérique de classe mondiale, orientés client, notamment pour l'aérodynamique, les écoulements multiphasiques, les transferts de chaleur convectifs et le givrage, grâce à l'excellence technique, à l'innovation continue et à des engagements réalistes.

Le rôle

-----------------------------------------------------------------------------------------------------------------------

Les environnements de givrage regroupent différents types de conditions de givrage. Parmi elles, les Grosses Gouttelettes Surfondues (Supercooled Large Droplets) présentent un intérêt particulier, car elles ont récemment été incluses dans les conditions de certification des avions. L'une des spécificités des SLD, notamment la bruine verglaçante et la pluie verglaçante, réside dans la taille des gouttelettes d'eau qu'elles contiennent. Leur diamètre peut dépasser 500 microns. Par conséquent, des phénomènes complexes se produisent lorsque ces particules impactent les surfaces des avions, notamment les éclaboussures et les rebonds. Par conséquent, une partie de l'eau contenue dans les gouttelettes ne se dépose pas sur les surfaces et est réémise dans l'écoulement d'air.

Afin de dimensionner correctement les systèmes de protection contre le givre en conditions de SLD, il est essentiel d'évaluer la quantité de givre susceptible de s'accumuler sur les surfaces des avions. Étant donné que cette quantité est directement liée à la quantité d'eau qui se dépose, une compréhension et une modélisation précises des phénomènes d'impact tels que les éclaboussures et les rebonds sont indispensables.

Malgré d'importants travaux de recherche expérimentale et de modélisation menés aux niveaux national, européen et international sur ce sujet, aucun des modèles SLD les plus récents n'est adéquat ni général, et des contradictions entre certains d'entre eux ont même été mises en évidence. 

L'objectif de cette thèse, réalisée en collaboration avec l'ONERA, est de réaliser une caractérisation expérimentale quantitative de la masse d'eau se déposant sur une surface lors d'un impact SLD. Grâce aux capacités expérimentales de l'ONERA (soufflerie verticale de givrage) et à son expertise scientifique, un dispositif expérimental sera conçu afin de permettre la mesure quantitative des quantités d'intérêt dans des conditions représentatives du givrage en vol d'un avion.

Des sensibilités à différents paramètres impliqués dans les phénomènes d'impact seront étudiées. Par exemple, le diamètre des gouttes et la rugosité de surface de l'objet testé seront modifiés. En particulier, les surfaces chauffées seront étudiées afin de simuler l'activation d'un système d'antigivrage ainsi que l'impact des gouttes sur les formes de givre qui se forment lorsque l'eau de givrage gèle en dehors des zones chauffées.

Ces données expérimentales alimenteront les modèles physiques afin d'améliorer les capacités numériques de givrage. Ces modèles améliorés seront implémentés dans les outils de simulation numérique du givrage de l'ONERA (IGLOO2D et IGLOO3D).

Les étapes suivantes devront être réalisées :

  • Revue de la littérature pour rassembler les données expérimentales disponibles, évaluer et sélectionner les techniques de mesure expérimentales disponibles.

  • Conception d’un dispositif expérimental dédié pour mesurer la masse d’eau déposée lors d’un impact SLD dans des conditions de givrage en vol représentatives d’un avion (altitude, vitesse, etc.).

  • Réalisation de campagnes expérimentales en soufflerie de givrage vertical de l’ONERA et mesure des quantités nécessaires.

  • Post-traitement des données expérimentales et amélioration des modèles SLD.

  • Implémentation des modèles SLD dans les suites de givrage 2D et 3D de l’ONERA.

  • Validation des modèles SLD par rapport aux données expérimentales disponibles dans la littérature.

Compétences requises :

------------------------------------------------------------------------------------------

Le/la candidat(e) retenu(e) devra démontrer les compétences suivantes :

  • Diplôme d’ingénieur ou master recherche en mathématiques appliquées ou en dynamique des fluides.

  • Bonne connaissance des techniques expérimentales en mécanique des fluides et en écoulements polyphasiques, y compris des techniques de mesure (une première expérience de l’utilisation d’un dispositif expérimental est un plus).

  • Bonne connaissance des méthodes numériques pour la CFD.

  • Bonnes connaissances. Principes fondamentaux de l'aérodynamique et de la couche limite

  • Bonnes connaissances en thermodynamique et en écoulements multiphasiques

  • Bonnes connaissances en programmation scientifique (Fortran, Python)

  • Communication, réseautage et collaboration

  • Niveau d'anglais avancé

This job requires an awareness of any potential compliance risks and a commitment to act with integrity, as the foundation for the Company’s success, reputation and sustainable growth.

Company:

Airbus Operations SAS

Employment Type:

PHD, Research

-------

Classe Emploi (France): Classe F11

Experience Level:

Student

Job Family:

Flight & Space Physics

By submitting your CV or application you are consenting to Airbus using and storing information about you for monitoring purposes relating to your application or future employment. This information will only be used by Airbus.
Airbus is committed to achieving workforce diversity and creating an inclusive working environment. We welcome all applications irrespective of social and cultural background, age, gender, disability, sexual orientation or religious belief.

Airbus is, and always has been, committed to equal opportunities for all. As such, we will never ask for any type of monetary exchange in the frame of a recruitment process. Any impersonation of Airbus to do so should be reported to emsom@airbus.com.

At Airbus, we support you to work, connect and collaborate more easily and flexibly. Wherever possible, we foster flexible working arrangements to stimulate innovative thinking.

Apply now Apply later

* Salary range is an estimate based on our AI, ML, Data Science Salary Index 💰

Job stats:  0  0  0
Category: Deep Learning Jobs

Tags: Airflow Engineering Fortran Mathematics PhD Physics Python Research SAS

Perks/benefits: Flex hours

Region: Europe
Country: France

More jobs like this